Differential modulation of gonadotropin responses to kisspeptin by aminoacidergic, peptidergic, and nitric oxide neurotransmission.
نویسندگان
چکیده
Kisspeptins (Kp), products of the Kiss1 gene, have emerged as essential elements in the control of GnRH neurons and gonadotropic secretion. However, despite considerable progress in the field, to date limited attention has been paid to elucidate the potential interactions of Kp with other neurotransmitters known to centrally regulate the gonadotropic axis. We characterize herein the impact of manipulations of key aminoacidergic (glutamate and GABA), peptidergic (NKB, Dyn, and MCH), and gaseous [nitric oxide (NO)] neurotransmission on gonadotropin responses to Kp-10 in male rats. Blockade of ionotropic glutamate receptors (of the NMDA and non-NMDA type) variably decreased LH responses to Kp-10, whereas activation of both ionotropic and metabotropic receptors, which enhanced LH and FSH release per se, failed to further increase gonadotropin responses to Kp-10. In fact, coactivation of metabotropic receptors attenuated LH and FSH responses to Kp-10. Selective activation of GABA(A) receptors decreased Kp-induced gonadotropin secretion, whereas their blockade elicited robust LH and FSH bursts and protracted responses to Kp-10 when combined with GABA(B) receptor inhibition. Blockade of Dyn signaling (at κ-opioid receptors) enhanced LH responses to Kp-10, whereas activation of Dyn and NKB signaling modestly reduced Kp-induced LH and FSH release. Finally, MCH decreased basal LH secretion and modestly reduced FSH responses to Kp-10, whereas LH responses to Kp-10 were protracted after inhibition of NO synthesis. In summary, we present herein evidence for the putative roles of glutamate, GABA, Dyn, NKB, MCH, and NO in modulating gonadotropic responses to Kp in male rats. Our pharmacological data will help to characterize the central interactions and putative hierarchy of key neuroendocrine pathways involved in the control of the gonadotropic axis.
منابع مشابه
Gonadotropin-Releasing Response to Kisspeptin-10 and Its Modulation by Progesterone in Postpartum Cyclic Cows
The present study aimed to evaluate the effect of kisspeptin-10 (Kp10), a shorter variant of kisspeptin retaining full biological activity, on the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) in cyclic adult cows, and the effect of plasma progesterone (P4)concentration on the response to Kp10 administration. The experiments were performed using five postpartum cows...
متن کاملKisspeptin signaling is required for peripheral but not central stimulation of gonadotropin-releasing hormone neurons by NMDA.
NMDA and kisspeptins can stimulate gonadotropin-releasing hormone (GnRH) release after peripheral or central administration in mice. To determine whether these agonists act independently or through a common pathway, we have examined their ability to stimulate GnRH/luteinizing hormone (LH) release after peripheral or central administration in Kiss1- or Gpr54 (Kiss1r)-null mutant mice. Peripheral...
متن کاملNitric Oxide Functions; an Emphasis on its Diversity in Infectious Diseases
Nitric oxide is a short-lived mediator, which can be induced in a variety of cell types and produces many physiologic and metabolic changes in target cells. It is important in many biological functions and generated from L-arginine by the enzyme nitric oxide synthase. Nitric oxide conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission and cytotoxici...
متن کاملIntermediary role of kisspeptin in the stimulation of gonadotropin-releasing hormone neurons by estrogen in the preoptic area of sheep brain
Introduction: The role of estrogen in the stimulation of gonadotropin-releasing hormone (GnRH) neurons is clear. These neurons do not express estrogen alpha receptors, so other mediator neurons should be present to transmit the positive feedback effect of estrogen to the GnRH neurons. Kisspeptin neurons have an important role in the stimulation of GnRH neurons, so they can be the mediator of...
متن کاملEndothelial nitric oxide synthase is predominantly involved in Angiotensin II modulation of renal vascular resistance and norepinephrine release Short title NO modulates renal sympathetic neurotransmission
NO is mainly generated by endothelial nitric oxide synthase (eNOS) or neuronal nitric oxide synthase (nNOS). Recent studies indicate that Ang II generates NO release, which modulates renal vascular resistance and sympathetic neurotransmission. Experiments in wild-type [eNOS(+/+) and nNOS(+/+)], eNOS deficient [eNOS(-/-)] and nNOS decficient [nNOS(-/-)] mice were performed to determine which NOS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 303 10 شماره
صفحات -
تاریخ انتشار 2012